Related Information

Follow us

Nanoscience, Vol. 1, Issue 2, Mar  2018, Pages 1-15; DOI: 10.31058/j.nano.2018.12001 10.31058/j.nano.2018.12001

Bioceramics: Materials, Properties and Applications-Part III

Nanoscience, Vol. 1, Issue 2, Mar  2018, Pages 1-15.

DOI: 10.31058/j.nano.2018.12001

Hassan Hassanien Mohamed Darweesh *1

1 Refractories, Ceramics and Building Materials Department, National Research Center, Dokki, Cairo, Egypt

Received: 24 December 2017; Accepted: 7 February 2018; Published: 12 April 2018

Download PDF | XML   | Views 228 | Download 137


The up to date or recent field of nanotechnology is considered as one of the most exciting and promising science branch so that it deals with all science branches particularly biology, medicine, tissue engineering, bone scaffolds, cement and bioceramic industries in which biomaterials could be used as bone scaffolds in the human bodies. The author interests with using the nano- and biomaterials to prepare the ceramic batches containing ultrafine and nano-raw materials to indicate the importance of nanomaterials and/or nanoparticles for improving the physicochemical and mechanical properties and microstructure of the resulting bioproducts. This can help people whom are suffering from the deficiency in their body bones as a result of accidents. These bioceramic products can compensate people for their lost or broken bones, as arms, legs, fingers or even toes.


Nanoparticles, Biomaterials, Ceramics, Bioceramic, Bone Scaffolds


© 2017 by the authors. Licensee International Technology and Science Publications (UK). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


[1] Taha, R. T. A. (2011), “Bioceramic composites suitable for bone graft”, M. Sc. Thesis (Biophysics), University College of Women, Ain Shams University.
[2] Mohamed, E. M. (2012), “Inorganic –organic hybrids based on PVA and Silica with added titania”, M. Sc. Thesis (Biophysics), University College of Women, Ain Shams University.
[3] Kokubo, T. “Bioactive glass ceramics” Properties and applications”. Biomaterials, 1991, 12, 155-163.
[4] Iarry, H. L. “Bioceramics from concept to clinical”. Amer. Cer. Soc., 1991, 74, 1487-1491.
[5] Klein, l. “Sol-gel optics: Processing and applications”. Springer Verlag, 1994, ISBN 0792394240.
[6] Kong, Y. M.; Kim, S.; Kim, H. E. “Reinforcement of hydroxyapatite bioceramics by addition of ZrO2 coated with Al2O3”. Amer. Cer. Soc., 1999, 82, 2963-2968.
[7] Susan, H. “Basic biomaterials”. 5th Edn. 2007, 88, 0071260412.
[8] Natesan, K.; Shah, W.; Le, H. R.; C. Tredwin, “A Critical Comparison on Biocompatibility of Different Phases of Sol-Gel Derived Calcium Phosphates as Bone Graft Materials”. J. Biomater. Tissue Eng. 2015, 5, 655-664.
[9] Zhu, W.; Cui, J.; Duan, L.; Chen, J.; Zeng, Y. and Wan,g, D. “Research Progress of Scaffold Materials in Cartilage Tissue Engineering”. J. Biomater. Tissue Eng. 2015, 5, 673-679.
[10] Yang, T.; Wang, H.; Zhang, F.; Meng, G.; Chen, Z. and Ren, X., “Glucocorticoid Modulated Crystallization of Apatite Nanocrystals”. J. Biomater. Tissue Eng., 2015, 5, 697-702.
[11] Hyuck, B.; Ryu, D. H.; Kim, S.B.; Kim, S.B.; Jung, Y.J.; Yoon, l.; Jeon, M.; Shim, Y.K. and Lee, W.K. “Fabrication and Evaluation of Scaffolds Using Porous Microparticles and Simplified Microsphere Sintering Method”. J. Biomater. Tissue Eng., 2015, 5, 722-729.
[12] Samad, S.A.; Arafat, A.A.; Gafur, M.A. and Chowdhury, A.M.S. “Characterization of Scaffold Prepared by Blending Nanobioactive Glass and Graphene Oxide Gelatin Hydrogel Solutions for Bone Tissue Engineering”. J. Biomater. Tissue Eng., 2015, 5, 620-627.
[13] El-Hady, B.I.; El-Kady, A.M.; Hassan, M.M.A. (2015), “Preparation and characterization of biocomposites for localized bone treatment based on Agarose and Gelatin”, Ph. D. Thesis (Biophysics), University College of Women, Ain Shams University.
[14] Hench, L.L.; West, J.K. “The sol-gel process”. Chemical Review, 1990, 90-133.
[15] Daniel, A.; Vallet-Regi, M. “Sol-gel silica based biomaterials and bone tissue regeneration”. Acta Biomaterialia, 2010, 6, 2874-2888.
[16] Balamurugan, A.; Balossier, G.; Laurent-Maquin, D.; Pina, S.; Rebelo, A.H.S.; Faure, J. and Gerreira, J.M.F. “ An in vitro biological and antimactobial study on a sol-gewl derived silver-incorporated bioglass system”. Dental Materials, 2008, 24, 1343-1351.
[17] Singh, D.; Bae, Y.; Singh, D.; Won, S.T.; Kim, J.H.; Han, S.S. “Novel Chitosan-HEMA-Gelatin Macroporous Scaffold for Bone Tissue Engineering”. J. Biomater. Tissue Eng., 2015, 5, 479-485.
[18] Aksoy, E.A.; Sezer, U.A.; Kara, F. and Hasirci, N. “Heparin/Chitosan/Alginate Complex Scaffolds as Wound Dressings: Characterization and Antibacterial Study Against Staphylococcus epidermidis”. J. Biomater. Tissue Eng., 2015, 5, 104-113.
[19] Alfano, A.L.; Fernandez, J.M. “Induction of Topographical Changes in Poly- -Caprolactone Scaffolds for Bone Tissue Engineering: Biocompatibility and Cytotoxicity Evaluations”. J. Biomater. Tissue Eng., 2015, 5, 142-149.
[20] Choudhury, M.; Mohanty, S. and Nayak, S. “Effect of Different Solvents in Solvent Casting of Porous PLA Scaffolds-In Biomedical and Tissue Engineering Applications”. J. Biomater. Tissue Eng., 2015, 5, 1-9.
[21] Gao, P.; Zhang, H.; Xiao, X.; Liu, Y.; Geng, L.; Yuan, Y.; Fan, B.; Liu, D.; Lian, Q.; Lu, J.; Wang, Z. “An Innovative Osteo-Regenerator Based on Beta-Tricalcium Phosphate Granules for Bone Tissue Engineering”. J. Biomater. Tissue Eng., 2015, 5, 50-55.
[22] Barba-Izquierdo, A. J. Salinas and M. Vallet-Regi, “In vitro calcium phosphate layer formation on sol-gel glasses of the CaO-SiO2. J. Biomed Mater. Res., 47, 1000, 243-250.
[23] P. Saravanapavan, I.; Hench, L.L. “Mesoporous calcium silicate glasses. I. Synthesis”. Journal of Non-Crystalline Solids, 2003, 318, 1-13.
[24] Phulé, P.P. and Wood, T.E. “Ceramics and Glasses, Sol-Gel Synthesis of” Encyclopedia of Materials: Science and Technology, 2001, 1090-1095, 0-08-0431526
[25] Julian, R. J.; Lisa, M. E.; Larry, L. H. “Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 7, 964-973.
[26] Balamurugan, A.; Sockalingum, G.; Michel, J.; Fauré, J.; Banchet, V.; Wortham, L.; Bouthors, S.; Laurent-Maquin, D.; Balossier. G. “Synthesis and characterization of sol gel derived bioactive glass for biomedical applications”. Materials Letters, 2006, 60, 3752–3757.
[27] Newport, R.J.; Skipper, L.J.; FitzGerald, V.; Pickup, D.M.; Smith, M.E. and Jones. J.R. “In vitro changes in the structure of a bioactive calcia–silica sol–gel glass explored using isotopic substitution in neutron diffraction”, Journal of Non-Crystalline Solids 353 (2007) 1854–1859.
[28] Gupta, R.; Mozumdar, S.; Chaudhury, N.K. “Fluorescence spectroscopic studies to characterize the internal environment of tetraethyl-orthosilicate derived sol–gel bulk and thin films with aging”. Biosensors and Bioelectronics, 2005, 20, Issue 7, 1358-1365.
[29] Siriphannon, P.; Kameshima, Y.; Yasumori, A.; Okada, K. and Hayashi, S. “Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid”. Journal of the European Ceramic Society, 2002, 22, 511–520.
[30] Drouet, C.R.C.; Sfihi, H.; Barroug, A. “Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials”. Materials Science and Engineering C, 2007, 27, 198–205.
[31] A. Meiszterics and K. Sink′o, “Sol–gel derived calcium silicate ceramics” Colloids and Surfaces A: Physicochem. Eng. Aspects (2007).
[32] Crayston, J.A. “Sol-gel” Comprehensive Coordination Chemistry II. 2003, 1, 711–730, 0-08-0443230.
[33] Alemany, M.I., Velasquez, P.; De la Casa-Lillo, M.A. and De Aza, P.N. “Effect of materials processing methods on the in vitro bioactivity of wollastonite glass-ceramic materials”, Journal of Non-Crystalline Solids, 2005, 351, 1716–1726.
[34] Lukito, D.; Xue, J.M. and Wang, J. “In vitro bioactivity assessment of 70 (wt.) %SiO2–30 (wt.) %CaO bioactive glasses in simulated body fluid” Materials Letters, 2005, 59, 3267 – 3271.
[35] Olmo, N.; Ana, I.M.; Antonio, J.S.; Turnay, J.; Vallet-Reg, M. and Lizarbe, M.A. “Bioactive sol–gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation”. Biomaterials, 2003, 24, 3383–3393.
[36] Barba, I.; Conde, F.; Olmo, N.; Lizarbe, M.A.; García, M.A. and Vallet-Regí, M. “Vitreous SiO2–CaO coatings on Ti6Al4V alloys: Reactivity in simulated body fluid versus osteoblast cell culture”. Acta Biomaterialia, 2006, 2, 4, 445-455.
[37] mila, A.R.; Vallet- Regm, M. “Static and dynamic in vitro study of a sol-gel glass bioactivity”. Biomaterials, 2001, 22, 2301-2306.
[38] Wei-hong, Z.; Jin-shu, C.; Jian, Q.; Xian-chun, L., Jian, L.I. “Crystallization and properties of some CaO-A12O3-SiO2 system glass-ceramics with Y2O3 addition”, Trans. Nonferrous Met. SOC. China, 2006, 16, 105-108.
[39] Xia, W. and Chang, J. “Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system”. Journal of Control Release, 2006, 110, 3, 522-530.
[40] Brinker, C.J.; Scherer, G.W. “The physics and chemistry of sol-gel processing”, Achdemic Press Inc., San Diego, CA, USA, 1990.
[41] Lao, J.; Nedelec, J.M.; Moretto, Ph. and Jallot, E. “Micro-PIXE characterization of interactions between a sol–gel derived bioactive glass and biological fluids”, Nuclear Instruments and Methods in Physics Research B 245 (2006) 511–518.
[42] Balamurugan, A.; Sockalingum, G.; Michel, J.; Fauré, J.; Banchet, V.; Wortham, L.; Bouthors, S.; Laurent-Maquin, D. and Balossier, G.“Synthesis and characterization of sol gel derived bioactive glass for biomedical applications”. Materials Letters, 2006, 60, 3752–3757.
[43] Liu, J. and Miao, X. “Sol–gel derived bioglass as a coating material for porous alumina scaffold”. Ceramics International, 2004, 30, 1781–1785.
[44] Wang, H.; Zhang, Q.; Yang, H. and Sun, H.“Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process”, Ceramics International, 2008, 34, 1405-1408.
[45] Huang, Y.-B.; Lin, M.-W.; Liu, M.-Y.; Chen, C.-L. “Composite of Decellular Adipose Tissue with Chitosan-Based Scaffold for Tissue Engineering with Adipose-Derived Stem Cells”, J. Biomater. Tissue Eng.; 2015, 5, 56-63.
[46] Nezafati, N.; Zamanian, A. “Effect of Silane-Coupling Agent Concentration on Morphology and In Vitro Bioactivity of Gelatin-Based Nanofibrous Scaffolds Fabricated by Electrospinning Method”, J. Biomater. Tissue Eng.; 2015, 5, 78-86.
[47] Kim, K.; Kim, D.Y.; Baek, J.H.; Kim, J.H.; Park, Y.H.; Kim, Y.J.; Min, B.H. and Kim, M.S. “Comparison of the In Vivo Bioactivity of Electrospun Poly(D,L-lactic-co-glycolic acid) and Poly(L-lactide) Fibrous Scaffolds”, J. Biomater. Tissue Eng.; 2015, 5, 372-377.
[48] Lao, J.; Nedelec, J.M.; Moretto, Ph. and Jallot, E. “Biological activity of a SiO2–CaO–P2O5 sol–gel glass highlighted by PIXE–RBS methods”. Nuclear Instruments and Methods in Physics Research B, 2007, 261, 488–493.
[49] Chen, Q.; Miyaji, F.; Kokubo, T. and Nakamura, T. “Apatite formation on PDMS-modified CaO-SiO2-TiO2 hybrids prepared by sol-gel process”. Biomaterials, 1999, 20, 1127-1132.
[50] Wang, E. and Chow, K.; Kwan, V.; Chin, T.; Wong, C. and Bocarsly, A. “Fast and long term optical sensors for pH based on sol–gels”. Analytica Chimica Acta, 2003, 495, 1-2 , 45-50.
[51] Scherer, G.W. “Structure and properties of gels”. Cem. Concr. Res., 1999, 29, 8, 1149-1157.
[52] Viitala, R.; Jokinen, M.; Peltola, T.; Gunnelius, K. and Rosenholm, J.B. “Surface properties of in vitro bioactive and non-bioactive sol–gel derived materials”. Biomaterials, 2002, 23, 3073–3086.
[53] Binnaz, A.; Hazar. Y. “Preparation and in vitro bioactivity of CaSiO3 powders. Ceramics International, 2007, 33, 687–692.
[54] Hayashi, Sh.; Nakagawa, Z.; Yasumori, A. and Okada, K. “Effects of H2O in EtOH-H2O disperse medium on the electrophoretic deposition of CaSiO3 Fine Powder”, Journal of the European Ceramic Society, 1999, 19, 75-79.
[55] Padilla, S.; Román, J.; Carenas, A. and Vallet-Regì. M. “The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics”. Biomaterials, 2005, 26475–483.
[56] Long, L.H.; Chen, L.D. and Chang, J. “Low temperature fabrication and characterizations of β-CaSiO3 ceramics” Ceramics International 32 (2006) 457–460.
[57] Lin, K.; Zhai, W.; Ni, S.; Chang, J.; Zeng, Y. and Qian. W. “Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics”. Ceramics International, 2005, 31, 323–326.
[58] Long, L.H.; Chen, L.D.; Bai, S.Q.; Chang, J. and Lin. K.L. “Preparation of dense β-CaSiO3 ceramic with high mechanical strength and HAp formation ability in simulated body fluid”. Journal of the European Ceramic Society, 2006, 26, 1701–1706.
[59] Haiyan, L. and Chang, J. “Fabrication and characterization of bioactive wollastonite /PHBV composite scaffolds”. Biomaterials, 2004, 25, 5473-5480.
[60] Meseguer-Olmo, L.; Bernabeu-Esclapez, A.; Ros-Martinez, E.; Sa′nchez-Salcedo, S.; Padilla, S.; Martìn, A.I.; Vallet-Regì, M.; Clavel-Sainz, M.; Lopez-Prats, F. and Meseguer-Ortiz, C.L. “In vitro behaviour of adult mesenchymal stem cells seeded on a bioactive glass ceramic in the SiO2–CaO–P2O5 system”. Acta Biomaterialia, 2008, 4, 1104-1113.
[61] Lin, K.; Chang, J.; Zeng, Y.; Qian, W. “Preparation of macroporous calcium silicate ceramics”. Materials Letters, 2004, 58, 2109–2113.
[62] Wu, Ch.; Ramaswamy, Y.; Kwik, D.; Zreiqat, H. “The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties”. Biomaterials, 2007, 28, 3171–3181.
[63] Kokubo, T.; Kim, H.; Kawashita, M. “Handbook of Advanced Ceramics”. Ceramics for Biomedical Applications, 2003, 385-416, Chapter 14 - 14.1.
[64] Wan, X.; Hu, A.; Li, M.; Chang, Ch.; Mao, D. “Performances of CaSiO3 ceramic sintered by Spark plasma sintering”. Materials Characterization, 2008, 59, 256-260.
[65] Arstila, H.; Vedel, E.; Hupa, L. and Hupa, M. “Factors affecting crystallization of bioactive glasses”. Journal of the European Ceramic Society, 2007, 27, 1543–1546.
[66] Liu, X. and Ding, Ch. “Characterization of plasma sprayed wollastonite powder and coatings”. Surface and Coatings Technology, 2002, 153, 2, 173-177.
[67] Peng, F.; Liang, K.; Hu, A.; Shao, H. “Nano-crystal glass-ceramics obtained by crystallization of vitrified coal fly ash”. Fuel, 2004, 83, 14-15, 1973-1977.
[68] Yuvarani, I.; Senthilkumar, S.; Venkatesan, J.; Kim, S.; Al-Kheraif, A.A.; Anil, S.; Sudha, P.N. “Chitosan Modified Alginate-Polyurethane Scaffold for Skeletal Muscle Tissue Engineering”, J. Biomater. Tissue Eng., 2015, 5, 665-672.
[69] Jiang, X.; Wu, H.; Zheng, L.; Zhao, J. “Effect of In-Situ Synthesized Nano-Hydroxyapatite/Collagen Composite Hydrogel on Osteoblasts Growth In Vitro”, J. Biomater. Tissue Eng., 2015, 5, 523-531.
[70] Guo, W.; Han, L.; Xia, R.; Cui, F.; Chen, S.; Ma, J. and Pan, J. “Repair of Mandibular Critical-Sized Defect of Minipig Using In Situ Periosteal Ossification Combined with Mineralized Collagen Scaffolds”, J. Biomater. Tissue Eng., 2015, 5, 439-444.
[71] Venkatesan, J.; Jayakumar, R.; Anil, S.; Chalisserry, E.P.; Pallela, R.; Kim, S. “Development of Alginate-Chitosan-Collagen Based Hydrogels for Tissue Engineering”. J. Biomater. Tissue Eng., 2015, 5, 458-464.
[72] Wang, J.; Cheng, N.; Yang, Q.; Zhang, Z.; Zhang, Q.; Biomater, J. “Double-Layered Collagen/Silk Fibroin Composite Scaffold That Incorporates TGF-ß1 Nanoparticles for Cartilage Tissue Engineering”. J. Biomater. Tissue Eng., 2015, 5, 357-363.
[73] Wei, X.; He, K.; Yu, S.; Zhao, W.; Xing, G.; Liu, Y.; Sun, J. “RGD Peptide-Modified Poly(lactide-co-glycolide)/ß-Tricalcium Phosphate Scaffolds Increase Bone Formation After Transplantation in a Rabbit Model”. J. Biomater. Tissue Eng., 2015, 5, 378-386 .
[74] Liu, J.; Mao, K.; Wang, X.; Guo, W.; Zhou, L.; Xu, J.; Liu, Z.; Mao, K.; Tang, P. “Calcium Sulfate Hemihydrate/Mineralized Collagen for Bone Tissue Engineering: In Vitro Release and In Vivo Bone Regeneration Studies”. J. Biomater. Tissue Eng., 2015, 5, 267-274.
[75] He, H.; Li, W.; Su, J.; Wang, H.; Ye, Z.; Cai, M.; Hou, B.; Liang, C.; Gong, J.; Guo, Y. “In Vitro Evaluation of the Cytocompatibility of an Acellular Rat Brain Matrix Scaffold with Neural Stem Cells”, J. Biomater. Tissue Eng., 2015, 5, 628-634.