Applied Chemistry, Vol. 1, Issue 1, Jun  2018, Pages 23-35; DOI: 10.31058/ 10.31058/

Effect of Process Conditions on the Catalytic Activity, Structure and Reaction Rate of Impregnated Co-Ni/Al2O3 Catalyst for CO Hydrogenation

Applied Chemistry, Vol. 1, Issue 1, Jun  2018, Pages 23-35.

DOI: 10.31058/

M. Arsalanfar 1* , M. Fatemi 2 , N. Mirzaei 3 , M. Abdouss 1 , Y. Zamani 4 , A. Nouri 5

1 Department of Chemistry, Amirkabir University of Technology, Hafez Ave, Tehran, Iran

2 Department of Chemistry, Faculty of sciences, University of Sistan and Baluchestan, Zahedan, Iran

3 Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran

4 Research Institute of Petroleum Industry of the National Iranian Oil Company, Gas Research Division, Tehran, Iran

5 Department of Chemistry, Islamic Azad University, Shahr-e-Qods Branch, Tehran, Iran

Received: 31 May 2018; Accepted: 24 June 2018; Published: 28 August 2018

Full-Text HTML | Download PDF | Views 1838 | Download 1103


The Co-Ni/Al2O3 catalyst was prepared using incipient wetness impregnation procedure. The effect of different process conditions including reaction temperature, pressure, H2/CO feed ratios and Gas Hourly Space Velocity (GHSV) on the catalytic performance of this impregnated catalyst for CO hydrogenation reaction was investigated in a fixed bed micro reactor. For this purpose reaction conditions were changed as follow: H2/CO ratio from1 to 4, GHSV from 3600 to 6300 and pressure from 1 to 11bar at different temperature from 230 to 260°C. Furthermore the rate of CO hydrogenation over the Co-Ni/ Al2O3 catalyst was investigated. Characterization of the catalysts was performed using various techniques including XRD, BET, SEM and EDS.


Process Conditions, Co-Ni Catalyst, CO Hydrogenation, Characterization, Reaction Rate


© 2017 by the authors. Licensee International Technology and Science Press Limited. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


[1] Cho K. M.; Park S.; Seo J. G.; Youn M. H.; Nam I.; Baeck S-H.; Chung J. S.; Jun K-W.; Song I. K. Effect of calcination temperature of alumina supports on the wax hydrocracking performance of Pd-loaded mesoporous alumina xerogel catalysts for the production of middle distillate. Chem. Eng. J. 2009, 146, 307-314.

[2] Pendyala V. R. R.; Jacobs G.; Mohandas J. C.; Luo M.; Hamdeh H. H.; Ji Y.; Ribeiro M. C.; Davis B. H.; Fischer–Tropsch Synthesis: Effect of Water Over Iron-Based Catalysts. Catal. Lett. 2010, 140, 98-105.

[3] Concepción P.; López C.; Martínez A.; Puntes V. F.; Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer–Tropsch synthesis reaction. J. Catal. 2004, 228, 321-332.

[4] Fleisch T. H.; Sills R. A.; Briscoe M. D.; Emergence of the Gas-to-Liquids Industry: a Review of Global GTL Developments. J. Nat. Gas. Chem. 2002, 11, 1-14.

[5] Van Berge P. J.; Barradas S.; Van De Loodsrecht J.; Visagie J. L. Advances in the cobalt catalyzed Fischer-Tropsch synthesis. Erdoel, Erdgas, Kohle, 2001, 117, 138-142.

[6] Oukaci R.; Singleton A. H.; Goodwin Jr J. G. Comparison of patented Co F–T catalysts using fixed-bed and slurry bubble column reactors. Appl. Catal. A: Gen. 1999, 186, 129-144.

[7] Liu Y.; Teng B.; Guo X.; Li Y.; Chang J.; Tian L.; Hao X.; Wang Y.; Xiang H.-W.; Xu Y.-Y.; Li Y.-W. Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischer-Tropsch synthesis. J. Mol. Catal. A: Chem. 2007, 272, 182-190.

[8] Keyser M. J.; Eversion R. C.; Espirnoza R. L. Fischer-Tropsch Kinetic Studies with Cobalt. Manganese oxide Catalyst. Ind. Eng. Chem. Res. 2000, 39, 48-54.

[9] Tao Z.; Yang Y.; Zhang C.; Li T.; Wang J.; Wan H.; Xiang H.; Li Y. Effect of calcium promoter on a precipitated iron–manganese catalyst for Fischer–Tropsch synthesis. Catal. Com. 2006, 7, 1061-1066.

[10] Zhang C. H., Yang Y., Teng B.-T., Li T.-Z., Zheng H.-Y., Xiang H.-W., Li Y.-W., Study of an iron-manganese Fischer–Tropsch synthesis catalyst promoted with copper. J. Catal. 2006, 237, 405-415.

[11] Das D.; Ravichandran G.; Chakrabarty D. K. Synthesis of light alkenes from syngas on silicalite-1 supported cobalt and cobalt-manganese catalysts. Appl. Catal. A: Gen. 1995, 131, 335-345.

[12] Ajamein H.; Sarkari M.; Fazlollahi F.; Atashi H. Effects of Reaction Conditions on Cobalt-Catalyzed Fischer-Tropsch Synthesis: Interactions between Operating Factors. J. Korean. Chem. Soc. 2011, 55, 824-829.

[13] Jiang M.; Koizumi N.; Ozaki T.; Yamada M. Adsorption properties of cobalt and cobalt-manganese catalysts studied by in situ diffuse reflectance FTIR using CO and CO+H2 as probes. Appl. Catal. A:Gen. 2001, 209, 59-70.

[14] Malessa R.; Baerns M. Iron/manganese oxide catalysts for Fischer-Tropsch synthesis. 4. Activity and selectivity. Ind. Eng. Chem. Res, 1988, 27, 279-283.

[15] Bian G.; Oonuki A.; Koizumi N.; Nomoto H.; Yamada M. Studies with a precipitated iron Fischer-Tropsch catalyst reduced by H2 or CO. J. Mol. Catal. A: Chem. 2002, 186, 203-213.

[16] Morales F.; de Smit E.; de Groot F. M. F.; Visser T. Weckhuysen B. M., Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer–Tropsch catalysts. J. Catal. 2007, 246, 91-99.

[17] Li H.; Wang S.; Ling F.; Li J. Studies on MCM-48 supported cobalt catalyst for Fischer–Tropsch synthesis. J. Mol. Catal. A: Chem. 2006, 244, 33-40.

[18] Sun S.; Tsubaki N.; Fujimoto K. The reaction performances and characterization of Fischer–Tropsch synthesis Co/SiO2 catalysts prepared from mixed cobalt salts. Appl. Catal. A: Gen. 2000, 202, 121-131.

[19] Park C.; Baker R. T. K.; Carbon Deposition on Iron–Nickel During Interaction with Ethylene–Carbon Monoxide–Hydrogen Mixtures. J. Catal. 2000, 190, 104-117.

[20] Kim S.-M., Bae J. W., Lee Y-J., Jun K-W., Effect of CO2 in the feed stream on the deactivation of Co/γ-Al2O3 Fischer–Tropsch catalyst. Catal. Com. 2008, 9, 2269-2273.

[21] Arsalanfar M.; Mirzaei A. A.; Bozorgzadeh H. R.; Atashi H. Effect of process conditions on the surface reaction rates and catalytic performance of MgO supported Fe–Co–Mn catalyst for CO hydrogenation. J. Ind. Eng. Chem. 2012, 18, 2092-2102.

[22] M. Arsalanfar; M. Fatemi; N. Mirzaei; M. Abdouss; E. Rezazadeh; Y. Zamani, accepted for publication in the Journal of Progress in Reaction Kinetics and Mechanism [manuscript ID: PRK1700633]

[23] Li T.; Yang Y.; Tao Z.; Zhang C.; Xiang H.; Li Y. Study on an iron manganese Fischer–Tropsch synthesis catalyst prepared from ferrous sulfate. Fuel. Process. Technol. 2009, 90, 1247-1251.

[24] Malek Abbaslou R. M.; Slotan Mohammadzadeh J. S.; Dalai A. K. Review on Fischer–Tropsch synthesis in supercritical media. Fuel. Process. Technol. 2009, 90, 849-856.

[25] Liu Y.; Teng B.; Guo X.; Li Y.; Chang J.; Tian L.; Hao X.; Wang Y.; Xiang H-W.; Xu Y-Y.; Li Y-W. Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischer-Tropsch synthesis. J. Mol. Catal. A: Chem. 2007, 272, 182-190.

Related Articles