Advancements in Materials, Vol. 3, Issue 1, Feb  2019, Pages 1-16; DOI: 10.31058/j.am.2018.31001 10.31058/j.am.2018.31001

Novel Method by Vickers Hardness to Determine Mechanical & Microstructural Parameters Using GNDs & SSDs

, Vol. 3, Issue 1, Feb  2019, Pages 1-16.

DOI: 10.31058/j.am.2018.31001

Emad Badawi 1* , M Abdel-naser Abdel-Rahman 1 , A Mostafa 1 , M Abdel-Rahman 1

1 Physics Department, Faculty of Science, Minia University, Minya, Egypt

Received: 12 February 2019; Accepted: 20 March 2019; Published: 22 April 2019

Full-Text HTML | Download PDF | Views 254 | Download 152

Abstract

Aluminum alloys are gaining more ground as first choice materials, especially in the transportation industry where a high strength to weight ratio is of premium importance. 3004 aluminum alloy is one of the most used non-heat treatable alloys which are employed in many industries (aeronautic, aerospace, blades, discs, rings, airframes…etc.), due to its attractive mechanical properties. In this work, the mechanical parameters of 3004 aluminum alloy i.e hardness coefficients (the total hardness, hardness of GNDs and hardness of SSDs) in addition to the microstructural parameters (mean crystallite size, micro strain and dislocation density) were determined from Vickers hardness measurement by using novel methods. The flow stress and stored energy were also highlighted.

Keywords

Hardness Test, 3004 Aluminum Alloy, Dislocation Density, Defect Density, Total Hardness, GNDs, SSDs, Estimated Crystallite Size, Micro Strain, Stored Energy

Copyright

© 2017 by the authors. Licensee International Technology and Science Press Limited. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

[1] Mostafa, A.; Abdel-Rahman, M. A.; Abdel-Rahman, M.; Badawi, E. A. Non- Destructive Doppler Broadening Technique (NDDBT) to Study Defect Properties Wrought Aluminum Alloy (3004). Journal of Scientific and Engineering Research, 2018, 5(10), 201-212.
[2] Abdel-Rahman, M. Determination of the Positron Parameters and the Stored Dislocation Energy of Plastically Deformed Wrought 3004 Al-Alloy. Int. J. New. Hor. Phys. 2017, 4(2), 43-47.
[3] Hutchinson, W. B.; Oscarsson, A.; Karlsson, Å. Control of microstructure and earing behaviour in aluminium alloy AA 3004 hot bands. Materials science and technology, 1989, 5(11), 1118-1127.‏
[4] Bushroa, A. R.; Rahbari, R. G.; Masjuki, H. H.; Muhamad, M. R. Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films. Vacuum, 2012, 86(8), 1107-1112.
[5] Ibrahim, H.; Mostafa, A.; Salah, M.; Abdel-Rahman, M. A.; Abdel-Rahman, M.; Badawi, E. A. Recovery of Deformed 1070 Al alloy by PALT & XRD. Journal of Scientific and Engineering Research, 2017, 4(9), 464-470.
[6] Badawi, E. A.; Abdel-Rahman, M. A.; Salah, M.; AbdelRahman, M. Study the Effect of Plastic Deformation in 8006 Al-Alloys by Positron Lifetime Spectroscopy, Vickers Hardness and X-Ray Diffraction. In Defect and Diffusion Forum, Trans Tech Publications, 2016, 373, 142-145.
[7] Durst, K.; Franke, O.; Böhner, A.; Göken, M. Indentation size effect in Ni–Fe solid solutions. Acta materialia, 2007, 55(20), 6825-6833.
[8] Durst, K.; Backes, B.; Franke, O.; Göken, M. Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Materialia, 2006, 54(9), 2547-2555.
[9] Nix, W. D.; Gao, H. Indentation size effects in crystalline materials: a law for strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1998, 46(3), 411-425.
[10] Ameri, A. A. H.; Elewa, N. N.; Ashraf, M.; Escobedo-Diaz, J. P.; Hazell, P. J. Estimation of Dislocation Density in Metals from Hardness Measurements. In Characterization of Minerals, Metals, and Materials, Springer, Cham. 2017, 441-449.
[11] Al-Rub, R.; Faruk, N. M. Dislocation-based model for predicting size-scale effects on the micro and nano indentation hardness of metallic materials. Int J Mater Struct Integrity, 2010, 4, 251-277.‏
[12] Graça, S.; Colaço, R.; Carvalho, P. A.; Vilar, R. Determination of dislocation density from hardness measurements in metals. Materials Letters, 2008, 62(23), 3812-3814.‏
[13] Hidalgo, C.; Linderoth, S.; de Diego, N. Positron‐Dislocation Interaction in Deformed Zn and Cd. physica status solidi (a), 1987, 102(1), 113-117.‏
[14] Abdel‐Rahman, M. Detecting thermal defects in age hardening Al‐6063 alloys by positron annihilation Doppler broadening technique. physica status solidi c, 2009, 6(11), 2359-2363.
[15] Badawi, E. A.; Abdel-Rahman, M. A.; Mostafa, A.; Abdel-Rahman, M. Determination of the Crystallite Size & Micro-Strain by Novel Method from XRD Profile. DOI: 10.31058/j.ap.2019.21001.

Related Articles