Agricultural Studies, Vol. 4, Issue 3, Jun  2020, Pages 10-26; DOI:

Phytoremediation of Phosphates by Two Aquatic Macrophytes as a Remedy for Eutrophication

, Vol. 4, Issue 3, Jun  2020, Pages 10-26.


Lakshi Ayodya Dayarathne 1 , Mohammed Cassim Mohammed Iqbal 2 , Chaminda Egodawatta 1

1 Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka

2 National Institute of Fundamental Studies, Hantana, Sri Lanka

Received: 20 January 2020; Accepted: 10 April 2020; Published: 22 June 2020

Full-Text HTML | Download PDF | Views 322 | Download 193


Eutrophication, a globally concerned water quality impairment as a result of excessive nutrient discharge, primarily by phosphates to water bodies from agricultural and other anthropogenic origins. Beyond a threshold of >0.03 mgL-1 of phosphates, usage of such eutrophied water bodies leads to severe health and environmental concerns to adjacent communities and ecosystems. Phytoremediation is a cost-effective plant-based approach, has been identified as sustainable and environmentally friendly remediation. The broad objective of the study was to assess the efficacy of aquatic macrophytes for phosphate phytoremediation. Eichhornia crassipes (Water hyacinth) and Pistia stratiotes L. (Water lettuce) were selected as candidate macrophytes. The efficacy of two selected macrophytes was tested in ambient atmospheric conditions in a greenhouse using floating sieves. Phytoremediation efficacy of different contact times, introductory weights, pH values, and initial phosphate concentrations were assessed. The phosphate sequestration ability of E. crassipes and P. stratiotes were estimated. A fresh weight of 250±5 g of two macrophytes was introduced into to a 3 L of 25 mgL-1 of phosphate solutions. The phosphate removal efficiencies were 71.6% and 76.8% from P. stratiotes, and E. crassipes respectively, after 48 hrs of equilibrium time. The most effective introduction biomass was 550 g for both P. stratiotes and E. crassipes with removal efficiencies of 77.1% and 80.1%, respectively. Maximum removal efficiencies of 77.7% and 83.7% were observed for P. stratiotes and E. crassipes at pH of 7. P. stratiotes reached to its maximum removal efficiency of 88.2% in 25 mgL-1, while in E. crassipes, the highest uptake was 47 mgL-1 at 250 mgL-1, despite the highest removal efficiency of 89.5% was at 25 mgL-1. P. stratiotes and E. crassipes showed a phosphorus sequestration potential of 35.4% and 41.6% from an eutrophied water body after five days, indicating a higher efficacy in phytoremediation and a candidacy of being a good source of phosphorus fertiliser in future.


Eichhornia Crassipes, Pistia Stratiotes, Phosphates, Phytoremediation, Removal Efficiency, Sequestration


© 2017 by the authors. Licensee International Technology and Science Press Limited. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


[1] Fang, Y.Y.; Yang, X.E.; Pu, P.M.; Chang, H.Q.; Ding, X.F. Water eutrophication in Li-Yang reservoir and its ecological remediation countermeasures. Journal of soil and water conservation. 2004, 18(6), 183-186.

[2] Klein, Günter.; Perera, Prudencio. Eutrophication and Health. Office for Official publications of the European Communities. 2002; pp. 28.

[3]  Mainstone, C.P.; Parr, W. Phosphorus in rivers-ecology and management. Sci Total Environ. 2002, 282-283(1-3), 25-47.

[4] Wetzel, R.G. Limnology: lake and river ecosystems, 3rd edition. Academic press, Sang Diego, California. 2001.

[5] Johnston, A.E.; Teén, I. S. Understanding phosphorus and its use in agricultureBrussels, Belgium. European Fertilizer Manufacturers Association. Available online: EFMA. Phosphorus booklet 2.pdf  (accessed on 30 July 2018).

[6] Zhu, B.; Alva, A.K. Distribution of trace metals in some sandy soils under citrus production. Soil Sci Soc Am J. 1993, 57, 350-355.

[7] Javier, M.S.; Sara, M.Z.; Hugh, T. Water pollution from Agriculture - A global review. Food and Agriculture Organization of the United Nations. Rome and the International Water Management Institute on behalf of the Water Land and Ecosystems research program, Colombo. 2017.

[8] Matsui, K.; Togami, J.; Mason, J.G.; Chandler, S.F.; Tanaka, Y. Enhancement of phosphate absorption by garden plants by genetic engineering: a new tool for phytoremediation. Bio Medical research international.2013, 182032.

[9] Greenlee, L.F.; Lawler, D.F.; Freeman, B.D.; Marrot, B.; Moulin, P.  Reverse osmosis desalination: water sources, technology, and today's challenges. Water research. 2009, 43 (9), 2317-2348.

[10] Ackerman, J.N. Reclaiming phosphorus as struvite from hog manure. University of Manitoba, Canada. 2013.

[11] Biswas, B.K.; Inoue, K.; Ghimire, K.N.; Harada, H.; Ohto, K.; Kawakita, H. Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium. Bioresour Technol. 2008, 99 (18), 8685-8690.

[12] Martín, M.; Gargallo, S.; Hernández-Crespo, C.; Oliver, N. Phosphorus and nitrogen removal from tertiary treated urban wastewaters by a vertical flow constructed wetland. Eco Eng. 2013, 61, 34-42.

[13] Huang, W.; Wang, S.; Zhu, Z.; Li, L.; Yao, X.; Rudolph, V.; Haghseresht, F. Phosphate removal from wastewater using red mud. J Hazard Mater. 2008, 158 (1), 35-42.

[14] Vamerali, T.; Bandiera, M.; Mosca, G. Field crops for phytoremediation of metal-contaminated land: a review. Environ Chem Lett. 2010, 8, 1-17.

[15] Murphy, J.; Riley, J. P.  A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962, 27, 31-36.

[16] Anderson, J.M.; Ingram, J.S.I. Tropical soil biology and fertility-A handbooks of method. Wallingford, Oxon OX 10 8DE, United Kingdom. C.A.B International. 1993.

[17] Kamiyango, M.; Sajidu, S.; Masamba, W. Removal of phosphate ions from aqueous solutions using bauxite obtained from Mulanje, Malawi. Afr J Biotechnol. 2011, 10 (56), 11972-11982.

[18] Qin, H.; Zhang, Z.; Liu, M.; Liu, H.; Wang, Y.; Wen, X.; Zhang, Y.; Yan, S. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Eco Eng. 2016, 95, 753-762.

[19] Gupta, P.; Roy, S.; Mahindrakar, A.B. Treatment of water using Water hyacinth, Water lettuce and Vetiver grass – A Review. Resources and Environment. 2012, 2(5), 202-215.

[20] Haritash A.K.; Dutta, S.; Sharma, A. Phosphate uptake and translocation in a tropical Canna-based constructed wetland. Ecol Process. 2017, 6(12), DOI: 10.1186/s13717-017-0079-3.

[21] Gamage, N.S.; Yapa, P.A.J. Use of water hyacinth (Eichhornia crassipes (Mart) solms) in treatment systems for textile mill effluents - A case study. J Natl Sci Found Sri. 2001, 29 (1-2), 15-28.

[22] Nivetha, C.; Subraja, S.; Sowmya, R.; Induja, N.M. Water Lettuce for Removal of Nitrogen and Phosphate from Sewage. IOSR Journal of Mechanical and Civil Engineering. 2016, 13(2), 104-107.

[23] Sheffield, C.W. Water hyacinth for nutrient removal. Hyacinth Control Journal. 1967, 27-30.

[24] John, R.; Ahmad, P.; Gadgil, K.; Sharma, S. Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ. 2008, 54, 262-270.

[25] Mane, A.V.; Saratale, G.D.; Karadge, B.A.; Samant, J.S. Studies on the effects of salinity on growth, polyphenol content and photosynthetic response in Vetiveria zizanioides (L.) Nash. Emirates Journal Food and Agriculture. 2011, 23 (1), 59-70.

[26] Mishra, V.K.; Upadhyay, A.R.; Pandey, S.K.; Tripathi, B.D. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environ Monit Assess. 2008, 141, 49-58.

[27] Agunbiade, F.O.; Olu-Owolabi, B.I.; Adebowale, K.O. Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water. Bioresour Technol. 2009, 100, 4521-4526.

[28] Gunasekara, L. Invasive plants- A guide to the identification of the most invasive plants in Sri Lanka. Print and print graphics (pvt) Ltd.  Sri Lanka (Undated).

[29] Jayaweera, M.W.; Kasturiarchchi, J.C.; Kularathne, R.K.A.; Wijeyekoon, S.L.J. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J of Environ Manage. 2008, 87, 450-460.

[30] Lu, Q.; He, Z.L.; Graetz, D.A.; Stoffella, P.J.; Yang, X. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut. 2010, 17(1), 84-96.

[31] Putra, R.S.; Cahyana, F.; Novarita, D. Removal of lead and copper from contaminated water using EAPR system and uptake by water lettuce (Pistia stratiotes L.). Procedia Chemistry. 2015, 14, 381-386.

[32] AnsariA.A. Phytoremediation of Eutrophic Waters. In Phytoremediation. Ansari A., Gill S. Gill R., Lanza G., Newman L. Eds. Springer, Cham, 2015. DOI: 10.1007/978-3-319-10969-5_4.

[33] Haiyn, L.; Liang, L.; Mingyi, L.; Xiaoran, Z. Effects of pH, temperature, dissolved Oxygen and flow rate on Phosphorus release processes at the sediment and water interface in storm sewer. J Anal Methods Chem. 20131-7.

[34] Lu, Q. Evaluation of aquatic plants for phytoremediation of eutrophic stormwaters, Ph. D Thesis, University of Florida, Florida. 2009.

[35] Biswas, N.; El-Gendy, A.S.; Bewtra, J.K. Growth of water hyacinth in municipal landfill leachate with different pH. Environment Technology. 2004, 25, 833-840.

[36] Raju, N.J.; Gossel, W.; Sudhakar, M. Management of natural resources in a changing environment. In Phytoremediation Study and Effect of pH on Biomass Productivity of Eichhornia Crassipes, Kumar, A., Singh, N., Gupta, S., Joshi, P., Tiwari, S., Swaroop, K.(eds.)Springer International Publishing, 2015; pp. 93-203.

[37] Dipu, S.; Kumar, A.A.; Thanga, V.S.G. Phytoremediation of dairy effluent by constructed wetland technology. Environmentalist201131, 263-278.

[38] Mahmood, Q.; Zheng, P.; Islam, E.; Hayat, Y.; Hassan, M.J.; Jilani, G.; Jin, R.C. Lab scale studies on water hyacinth (Eichhornia crassipes (Marts) Solms) for bio treatment of textile wastewater. Casp J of Environ Sci, 2005, 3(2), 83-88.

[39] William, T.; Sutton, D.L. Effect of pH and high phosphorus concentration on growth of water hyacinth. University of Florida, Agricultural Research Center. Fort Lauderdale, Florida. (Undated).

[40] Mikkelsen, R.L. A closer look at phosphorus uptake by plants Getting P into the Plant: A regional newsletter published by international plant nutrition institute. 2005; pp. 1-3.

[41] Ayyasamy, P.M.; Rajakumar, S.; Sathishkumar, M.; Swaminathan, K.; Shanthi, K.; Lakshmanaperumalsamy, P.; Lee, S. Nitrate removal from synthetic medium and groundwater with aquatic macrophytes. Desalination. 2009, 242, 286–296.

[42] Eaton, F.M. Water uptake and root growth as influenced by inequalities in the concentration of the substrate. Plant Physiol. 1941, 16, 545-564.

[43] Borker, A.; Mane, A.; Saratale, Ganesh.; Pathade, G. Phytoremediation potential of Eichhornia crassipes for the treatment of cadmium in relation with biochemical and water parameters. Emirates Journal Food and Agriculture. 201225(6), 59-70.

[44] Haller, W.T.; Knipling, E.B.; West, S.H. Phosphorus absorption by and distribution in water hyacinth. Proceedings soil and crop Science Society of Florida. 1970, 30, 64-64.

[45] Nayanathara, O.S.; and Bindu, A. G.  Effectiveness of water hyacinth and water lettuce for the treatment of grey water - a review. International journal innovative research in science and engineering. 2017, 3(1), 350-353.

[46] Reddy, K.R.; Debusk, W.F. Nutrient removal potential of selected aquatic macrophytes. J of Environ Qual. 1985, 14, 459-462.

[47] Fonkou, T.; Agendia, P.; Kengne, I.; Akoa, A.; Nya, J. Potentials of water lettuce (Pistia stratiotes) in domestic sewage treatment with macrophytic lagoon systems in Cameroon. In Proceedings of International Symposium on Environmental Pollution Control and Waste ManagementTunis. 2002; pp. 709-714.

[48] Lu, Q.; He, Z.L.; Graetz, D.A.; Stoffella, P.J.; Yang, X. Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Enviro Sci Pollut. 2011, 8, 978-986. 

[49] Knipling, E.B.; West, S.H.; Haller, W.T.  Growth characteristics yield potential and nutritive content of water hyacinths. In Proceedings of the Soil and Crop Science Society of Florida. 1970; pp. 51-63.

[50] USEPA, Design Manual - Constructed wetlands and aquatic systems for municipal wastewater treatment, United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.83. 1988.

[51] Vance, C. P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 2001; pp. 127, 390-397.

[52] Lu, Q.; He, Z.L.; Graetz, D.A.; Stoffella, P.J.; Yang, X. Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Enviro Sci Pollut. 2011, 18(6), 978-986.

[53] A.L.-Nozaily, F.; Alaerts, G.; Veenstra, S. Performance of duckweed-covered sewage lagoons-II. Nitrogen and phosphorus balance and plant productivity. Water Res. 2002, 34(10), 2734-2741.

[54] Kim, Y.; Kim, W. Roles of water hyacinths and their roots for reducing algal concentration in the effluent from waste stabilization ponds. Water Res. 2002, 34(13), 3285-3294.

[55] Clayton, L.R. Phytoremediation. Encyclopedia of Plant and Crop Science. Taylor and Francis, London UK. 2007.

[56] Hu, C.W.; Sun, Z.D.; Li, J.L.; Qu, Y.X. Application of water hyacinth in restoration of heavily polluted urban rivers. Chinese Journal of Environmental Engineering. 20071(12), 51-56DOI: 10.1088/1755-1315/300/5/052046.

Related Articles