• Most Downloaded Papers
  • Open Access

    Phytochemical, Antimicrobial and Heavy Metals Analyses of Sarcocephalus Latifolius Leave Extract

    Ifeoma Maryjane Iloamaeke 1* ,  Ugochukwu Christian Umeobika 1,  Chioma Jane Francis Osuizuigbo 1,  Ikechukwu Johnson Ekwueme 1 ,  Chidinma Peace Okonkwo 1

    Abstract | References Full Paper: PDF (Size:48KB) Downloads:2748

    Show/Hide Abstract

    Abstract: Extraction of the leaves of Sarcocephalus latifolius was done using acetone, methanol, diethylether, petroleum ether, water and ethanol as solvent to analyze its phytochemical constituents followed by the quantitative analysis and antimicrobial property. Phytochemical analysis indicated the presence of alkaloids (5.22%) in diethylether, petroleum ether and water extracts, saponins (18.2%) in methanol and water extracts, but trace amount in acetone, petroleum ether and ethanol extracts, tannins (0.63%) in water and ethanol extracts, glycosides (0.72%) in acetone, diethyl ether, ethanol, water and methanol extracts while steroids and flavonoids were absent. Antimicrobial susceptibility test of water and methanol extract was done using the agar well diffusion method against clinical isolates of gram positive bacteria (streptococcus pyogenes and staphylococcus aureus) and gram negative bacteria (Escherichia coli and Salmonella typhi). The result of water extract showed higher inhibition potency than the methanol extract when compared with the positive control Ciprofloxacin. Heavy metal analysis was also conducted, the result indicated absence of chromium, lead, and arsenic, presence of zinc(0.18ppm), nickel(7.69ppm), manganese(2.21ppm), iron(1.36ppm),) and copper(0.1ppm). All were within W.H.O acceptable limit except nickel. This result concludes that the leaves of Sarcocephalus latifolius is medicinal as speculated by the orthodox medicine, but the heavy metals constituents of the plant should also be considered to avoid taking contaminated extract as medicine.

    Abstract: Extraction of the leaves of Sarcocephalus latifolius was done using acetone, methanol, diethylether, petroleum ether, water and ethanol as solvent to analyze its phytochemical constituents followed by the quantitative analysis and antimicrobial property. Phytochemical analysis indicated the presence of alkaloids (5.22%) in diethylether, petroleum ether and water extracts, saponins (18.2%) in methanol and water extracts, but trace amount in acetone, petroleum ether and ethanol extracts, tannins (0.63%) in water and ethanol extracts, glycosides (0.72%) in acetone, diethyl ether, ethanol, water and methanol extracts while steroids and flavonoids were absent. Antimicrobial susceptibility test of water and methanol extract was done using the agar well diffusion method against clinical isolates of gram positive bacteria (streptococcus pyogenes and staphylococcus aureus) and gram negative bacteria (Escherichia coli and Salmonella typhi). The result of water extract showed higher inhibition potency than the methanol extract when compared with the positive control Ciprofloxacin. Heavy metal analysis was also conducted, the result indicated absence of chromium, lead, and arsenic, presence of zinc(0.18ppm), nickel(7.69ppm), manganese(2.21ppm), iron(1.36ppm),) and copper(0.1ppm). All were within W.H.O acceptable limit except nickel. This result concludes that the leaves of Sarcocephalus latifolius is medicinal as speculated by the orthodox medicine, but the heavy metals constituents of the plant should also be considered to avoid taking contaminated extract as medicine.

  • Open Access

    Functionalization and Antimicrobial Evaluation of New Linear Azo-Phenothiazine Derivatives

    Ayuk,  Eugene L. 1* ,  Eze Boniface. 1 ,  Njokunwogbu 1 ,  Ambrose N. 1,  Aronimo,  Samuel B. 2

    Abstract | References Full Paper: PDF (Size:328KB) Downloads:2218

    Show/Hide Abstract

    Abstract: Phenothiazine and its derivatives are very important compounds that have many biological and industrial applications. Azo-compounds on the other hand have also been identified to possess good dyeing and biological properties as well. This work is focused on the synthesis of new linear phenothiazine azo-dye compounds via diazotization reaction as well as the determination of their biological activity against some microogrganisms. The above was achieved by the condensation reaction of 3-nitoaniline and phenol in presence of potassium hydroxide and DMF (solvent) to furnished 3-nitrodiphenylamine. Sulphonation of this compound in presence of molecular iodine gave 4-nitro-[10H]-phenothiazine. The conversion of nitro group in 4-nitro-[10H]-phenothiazine to an amino group was achieved by treating it with dilute hydrochloric acid and iron (III) chloride. The amino compound formed, (4-amino-[10H]-phenothiazine) was thereafter converted to an unstable diazonium ion in the presence of sodium nitrite and concentrated hydrochloric. The ion formed above was immediately coupled with the following compounds; 3-nitroaniline, 4-nitroaniline and phenol respectively to furnish four new azophenothiazine compounds namely; 4-azo-(4-amino-2-nitroanilino)-[10H]-phenothiazine, 4-azo-(2-amino-5-nitroanilino)-[10H]-phenothiazine and 4-azo-(4-hydroxyphenyl)-[10H]-phenothiazine with good percentage yields. The synthesized compounds were tested for activity against some microorganisms and they showed some level of inhibition.

    Abstract: Phenothiazine and its derivatives are very important compounds that have many biological and industrial applications. Azo-compounds on the other hand have also been identified to possess good dyeing and biological properties as well. This work is focused on the synthesis of new linear phenothiazine azo-dye compounds via diazotization reaction as well as the determination of their biological activity against some microogrganisms. The above was achieved by the condensation reaction of 3-nitoaniline and phenol in presence of potassium hydroxide and DMF (solvent) to furnished 3-nitrodiphenylamine. Sulphonation of this compound in presence of molecular iodine gave 4-nitro-[10H]-phenothiazine. The conversion of nitro group in 4-nitro-[10H]-phenothiazine to an amino group was achieved by treating it with dilute hydrochloric acid and iron (III) chloride. The amino compound formed, (4-amino-[10H]-phenothiazine) was thereafter converted to an unstable diazonium ion in the presence of sodium nitrite and concentrated hydrochloric. The ion formed above was immediately coupled with the following compounds; 3-nitroaniline, 4-nitroaniline and phenol respectively to furnish four new azophenothiazine compounds namely; 4-azo-(4-amino-2-nitroanilino)-[10H]-phenothiazine, 4-azo-(2-amino-5-nitroanilino)-[10H]-phenothiazine and 4-azo-(4-hydroxyphenyl)-[10H]-phenothiazine with good percentage yields. The synthesized compounds were tested for activity against some microorganisms and they showed some level of inhibition.

  • Open Access

    Effect of Process Conditions on the Catalytic Activity, Structure and Reaction Rate of Impregnated Co-Ni/Al2O3 Catalyst for CO Hydrogenation

    M. Arsalanfar 1*,  M. Fatemi 2,  N. Mirzaei 3,  M. Abdouss 1,  Y. Zamani 4,  A. Nouri 5

    Abstract | References Full Paper: PDF (Size:684KB) Downloads:1770

    Show/Hide Abstract

    Abstract: The Co-Ni/Al2O3 catalyst was prepared using incipient wetness impregnation procedure. The effect of different process conditions including reaction temperature, pressure, H2/CO feed ratios and Gas Hourly Space Velocity (GHSV) on the catalytic performance of this impregnated catalyst for CO hydrogenation reaction was investigated in a fixed bed micro reactor. For this purpose reaction conditions were changed as follow: H2/CO ratio from1 to 4, GHSV from 3600 to 6300 and pressure from 1 to 11bar at different temperature from 230 to 260°C. Furthermore the rate of CO hydrogenation over the Co-Ni/ Al2O3 catalyst was investigated. Characterization of the catalysts was performed using various techniques including XRD, BET, SEM and EDS.

    Abstract: The Co-Ni/Al2O3 catalyst was prepared using incipient wetness impregnation procedure. The effect of different process conditions including reaction temperature, pressure, H2/CO feed ratios and Gas Hourly Space Velocity (GHSV) on the catalytic performance of this impregnated catalyst for CO hydrogenation reaction was investigated in a fixed bed micro reactor. For this purpose reaction conditions were changed as follow: H2/CO ratio from1 to 4, GHSV from 3600 to 6300 and pressure from 1 to 11bar at different temperature from 230 to 260°C. Furthermore the rate of CO hydrogenation over the Co-Ni/ Al2O3 catalyst was investigated. Characterization of the catalysts was performed using various techniques including XRD, BET, SEM and EDS.

  • Open Access

    A Short Review on Antimicrobial Activity Study on Transition Metal Complexes of Ni Incorporating Schiff Bases

    Md. Saddam Hossain 1,  H. M. Tariqul Islam 1 ,  Md. Nuruzzaman Khan 1,  Abinash Chandro Sarker 1,  Bijan Mohon Chaki 1,  Abdul Latif 1,  Nasiruddin 2,  Ashraful Alam 3 ,  C.M. Zakaria 4,  Md. Kudrat-E-Zahan 4*

    Abstract | References Full Paper: PDF (Size:584KB) Downloads:1443

    Show/Hide Abstract

    Abstract: Schiff bases and their complexes are flexible compounds synthesized from the condensation of an amino compound with carbonyl compounds and extensively used for industrial purposes and also show a broad range of biological activities including antibacterial, antifungal, antiviral, antimalarial, ant proliferative, anti-inflammatory, anticancer, anti-HIV, anthelminthic and antipyretic properties. Many Schiff base complexes show excellent catalytic activity in various reactions and in the presence of moisture. Over the past few years, there have been many reports on their applications in homogeneous and heterogeneous catalysis. The high thermal and moisture stabilities of many Schiff base complexes were useful attributes for their application as catalysts in reactions involving at high temperatures. The activity is usually increased by complexation therefore to understand the properties of both ligands and metal can lead to the synthesis of highly active compounds. The influence of certain metals on the biological activity of these compounds and their intrinsic chemical interest as multidentate ligands has prompted a considerable increase in the study of their coordination behavior. Development of a new chemotherapeutic Schiff bases and their metal complexes is now attracting the attention of medicinal chemists. This review compiles the antimicrobial activity of transition metal complexes of Ni over the few year decades.

    Abstract: Schiff bases and their complexes are flexible compounds synthesized from the condensation of an amino compound with carbonyl compounds and extensively used for industrial purposes and also show a broad range of biological activities including antibacterial, antifungal, antiviral, antimalarial, ant proliferative, anti-inflammatory, anticancer, anti-HIV, anthelminthic and antipyretic properties. Many Schiff base complexes show excellent catalytic activity in various reactions and in the presence of moisture. Over the past few years, there have been many reports on their applications in homogeneous and heterogeneous catalysis. The high thermal and moisture stabilities of many Schiff base complexes were useful attributes for their application as catalysts in reactions involving at high temperatures. The activity is usually increased by complexation therefore to understand the properties of both ligands and metal can lead to the synthesis of highly active compounds. The influence of certain metals on the biological activity of these compounds and their intrinsic chemical interest as multidentate ligands has prompted a considerable increase in the study of their coordination behavior. Development of a new chemotherapeutic Schiff bases and their metal complexes is now attracting the attention of medicinal chemists. This review compiles the antimicrobial activity of transition metal complexes of Ni over the few year decades.